To evaluate the hepatocurative effects of taurine (TAU) and methylsulfonylmethane (MSM) in acetaminophens- induced neuro- and hepato- toxicity in albino rats. Silymarin (SLN) was used as reference drug.
Methods: A total of 40 albino rats were assigned into five groups of 8 rats in each group. Rats was administered a single daily dose of acetaminophen (APAP, 500 mg/kg body weight, p.o) for 14 days. Acetaminophen treated rats were divided into four groups, the positive control group, taurine treated group, MSM treated group and silymarin treated group. The Acetaminophen- intoxicated animals were treated with the tested drugs for two weeks. A group of untreated animals served as negative control.
Results: There was significant (P<0.05) increase in levels of liver marker enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the actaminophen- treated rats, compared to the normal control. Moreover, acetaminophen induced oxidative stress in both liver and brain tissues in terms of increased MDA, GSSG and NO contents and decreased GSH; and caused oxidative DNA damage in terms of elevation of 8-hydroxy-2-deoxyguanine (8-OHdG). In brain, acetaminophen (APAP) moderately disturbed the normal levels of DA, NE and serotonin. Both silymarin, taurine and MSM normalized the serum activities of liver marker enzymes (ALT and AST) and restored the normal redox status and ameliorated acetaminophen induced DNA- oxidative damage in liver. In addition, both silymarin, taurine and MSM restored the normal redox status and the normal levels of brain monoamines (DA, NE and 5-HT) and ameliorated acetaminophen induced DNA- oxidative damage in brain. The efficiency of neuro- and hepatocurative effect was SLN> TAU > MSM. Conclusion: the study shows that taurine, silymarin and MSM possess significant neuro- and hepato-curative attribute due to their antioxidant properties.
Methylsulfonylmethane (MSM) is a natural organosulfur compound that exhibits antioxidative and anti-inflammatory effects. This study was carried out to investigate the effect of MSM on paraquat (PQ)-induced acute lung and liver injury in mice. A single dose of PQ (50 mg/kg, i.p.) induced acute lung and liver toxicity. Mice were treated with MSM (500 mg/kg/day, i.p.) for 5 days. At the end of the experiment, animals were euthanized, and lung and liver tissues were collected for histological and biochemical analysis. Tissue samples were used to determine malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and tumor necrosis factor-α (TNF-α) levels. Blood samples were used to measure plasma alanine transaminase (ALT), γ-glutamyl transferase (GGT), and alkaline phosphatase (ALP). Histological examination indicated that MSM decreased lung and liver damage caused by PQ. Biochemical results showed that MSM treatment significantly reduced tissue levels of MDA, MPO, and TNF-α, while increased the levels of SOD, CAT, and GSH compared with PQ group. MSM treatment also significantly reduced plasma levels of ALT, GGT, and ALP. These findings suggest that MSM as a natural product attenuates PQ-induced pulmonary and hepatic oxidative injury.
Objective(s): Methylsulfonylmethane (MSM) is a sulfur-containing compound found in a wide range of human foods including fruits, vegetables, grains and beverages. In this study the effect of MSM pretreatment on acetaminophen induced liver damage was investigated.
Materials and Methods: Male Sprague Dawley rats were pretreated with 100 mg/kg MSM for one week. On day seven rats were received acetaminophen (850 mg/kg, intraperitoneal). Twenty-four hours later, blood samples were taken to determine serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Tissue samples of liver were also taken for the determination of the levels of malondialdehyde (MDA); total glutathione (GSH), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity together with histopathological observations.
Results: High dose of acetaminophen administration caused a significant decrease in the GSH level of the liver tissue, which was accompanied with a decrease in SOD activity and increases in tissue MDA level and MPO activity. Serum ALT, AST levels were also found elevated in the acetaminophen-treated group. Pretreatment with MSM for one week was significantly attenuated all of these biochemical indices.
Conclusion: Our findings suggest that MSM pretreatment could alleviate hepatic injury induced by acetaminophen intoxication, may be through its sulfur donating and antioxidant effects.
This study evaluated the effect of methylsulfonylmethane (MSM) on carbon tetrachloride (CCl₄)-induced acute liver injury in rats. A single injection of CCl₄ (2 ml/kg, i.p.) increased serum aminotransferases (ALT and AST) activities. In addition, CCl₄ treatment led to elevation of hepatic malondialdehyde (MDA) content as well as decrease in superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, cytochrome P450 2E1 (CYP2E1) content was suppressed while proinflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels increased in liver tissue after CCl4 administration. We showed that acute CCl₄-induced damage was accompanied by a rise in Bax/Bcl₂ ratio indicating apoptosis. Pre-treatment with MSM (400 mg/kg) inhibited the increases of serum ALT and AST activities, decreased hepatic MDA, TNF-α, IL-6 and Bax/Bcl₂ ratio compared to CCl₄ treated group. On the other hand, MSM raised SOD and CAT activities as well as CYP2E1 level in liver tissues. The present study shows that MSM possesses a hepatoprotective effect against CCl₄-induced liver injury in rats. This protective effect might be through its antioxidant, anti-inflammatory and antiapoptotic properties.
Methylsulfonylmethane (MSM) is naturally occurring organic sulfur that is known as a potent antioxidant/anti-inflammatory compound. The aim of this study was to investigate the effect of MSM on hemodynamics functions and oxidative stress in rats with monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH). Wistar rats were randomly assigned to 38-days treatment. MSM was administered to rats at 100, 200, and 400 mg/kg/day doses 10 days before a single dose of 60 mg/kg, IP, MCT. Hemodynamics of ventricles were determined by Powerlab AD instrument. Blood samples were obtained to evaluate changes in the antioxidative system including activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) and malondialdehyde (MDA). Improvements in cardiopulmonary hemodynamics were observed in the MSM-treated pulmonary arterial hypertensive rats, with a significant reduction in right ventricular systolic pressure (RSVP) and an increase in the mean arterial pressure (MAP). The values of CAT, SOD, GSH-px activities, and GSH were significantly lower in MCT-induced PAH (P < 0.01), but they were recovered to control levels of MSM-treated groups. Our present results suggest that long-term administration of the MSM attenuates MCT-induced PAH in rats through modulation of oxidative stress and antioxidant defense.
Methylsulfonylmethane (MSM), naturally occurring in green plants, fruits and vegetables, has been shown to exert anti-inflammatory and antioxidant effects. MSM is an organosulfur compound and a normal oxidative metabolite of dimethyl sulfoxide. This study was carried out to investigate the effect of MSM in a rat model of experimental colitis. Colitis was induced by intracolonic instillation of 1 ml of 5% of acetic acid. Rats were treated with MSM (400 mg/kg/day, orally) for 4 days. Animals were euthanized and distal colon evaluated histologically and biochemically. Tissue samples were used to measurement of malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), glutathione (GSH) and proinflammatory cytokine (TNF-α and IL-1β) levels. Results showed that MSM decreased macroscopic and microscopic colonic damage scores caused by administration of acetic acid. MSM treatment also significantly reduced colonic levels of MDA, MPO and IL-1β, while increased the levels of GSH and CAT compared with acetic acid-induced colitis group. It seems that MSM as a natural product may have a protective effect in an experimental ulcerative colitis.
Methylsulfonylmethane (MSM) is a organic molecule present in small amounts in a number of foods and sold as a dietary supplement. MSM’s antioxidant actions have been proposed based mostly on indirect evidence. For example, antioxidant actions in vivo of a related compound, DMSO, may be produced by MSM formed in vivo from DMSO. Thus, a study was done in mice to determine whether oral intake of MSM (OptiMSM®, Bergstrom Nutrition) could affect tissue levels of an internal sulfur-containing antioxidant, glutathione, and resistance to chemically- induced oxidant stress. MSM administration (5 weeks, 80 mg/100 ml drinking water) produced a statistically significant increase in liver glutathione (mean increase of 78%). A similar effect was not seen in lung or skeletal muscle. In addition, MSM partially inhibited liver injury after injection of carbon tetrachloride, which induces liver oxidant stress (injury evaluation based on blood indexes of hepatic injury). These results indicate the need for further testing for MSM antioxidant actions in vivo, and to explore the mechanism of elevated glutathione. This work was supported in part by an unrestricted research gift from Bergstrom Nutrition.
HIV-1 Tat protein is a key neuropathological element in HIV associated neurogcognitive disorders (HAND); a type of cognitive syndrome thought to be at least partially mediated by increased levels of brain reactive oxygen species (ROS) and nitric oxide (NO). Methylsulfonylmethane (MSM) is a sulfur-containing compound known to reduce oxidative stress. This study was conducted to determine whether administration of MSM attenuates HIV-1 Tat induced oxidative stress in mouse neuronal cells. MSM treatment significantly decreased neuronal cell NO and ROS secretion. Further, MSM significantly reversed HIV-1 Tat mediated reductions in reduced glutathione (GSH) as well as HIV-1 Tat mediated increases in oxidized glutathione (GSSG). In addition, Tat reduced nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a key nuclear promoter of antioxidant activity, while MSM increased its translocation to the nucleus in the presence of Tat. These results suggest that HIV-1 Tat reduces the resiliency of neuron cells to oxidative stress which can be reversed by MSM. Given the clinical safety of MSM, future preclinical in vivo studies will be required to further confirm these results in effort to validate MSM as a neuroprotectant in patients at risk of, or who are already diagnosed with, HAND.
Methylsulfonylmethane (MSM) is an organosulfur compound and the health benefits associated with MSM include inflammation. Although MSM has been shown to have various physiological effects, no study has yet focused on inflammasome activation. The inflammasome is a multiprotein complex that serves as a platform for caspase 1-dependent proteolytic maturation and secretion of interleukin-1β (IL-1β). In this study, we tested the effect of MSM on inflammasome activation using mouse and human macrophages. In our results, MSM significantly attenuated NLRP3 inflammasome activation in lipopolysaccharide-primed macrophages, although it had no effect on NLCR4 or AIM2 inflammasome activation. Extracts of MSM-enriched vegetables presented the same inhibitory effect on NLRP3 inflammasome activation as MSM. MSM also attenuated the transcriptional expression of IL-1α, IL-1β, IL-6, and NLRP3. Taken together, these results show that MSM has anti-inflammatory characteristics, interrupts NLRP3 inflammasome activation, and inhibits pro-cytokine expression. We further confirmed the intracellular mechanism of MSM in relation to NLRP3 inflammasome activation, followed by comparison with that of DMSO. Both chemicals showed a synergic effect on anti-NLRP3 activation and attenuated production of mitochondrial reactive oxygen species (ROS). Thus, MSM is a selective inhibitor of NLRP3 inflammasome activation and can be developed as a supplement to control several metabolic disorders.
Methylsulfonylmethane (MSM) is a non-toxic, natural organosulfur compound, which is known to possess antioxidant and anti-inflammatory activities. In recent years, MSM has been widely used as a dietary supplement for its beneficial effects against various diseases, especially arthritis. Despite being a popular supplement product, the mechanism of action of MSM is not well known. This study was designed to investigate the effects of MSM on cytotoxic signals induced by lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) in RAW 264.7 macrophage-like cells. The results showed that MSM reversed apoptosis of RAW 264.7 macrophage-like cells at non-cytotoxic concentrations probably through the modulation of apoptotic proteins. After pre-treatment of cells with non-toxic doses of MSM; caspase-3 activation, p53 accumulation, cytochrome c release and Bax/Bcl-2 ratio were significantly decreased and full length poly ADP-ribose polymerase (PARP) was significantly increased. In addition, the loss of mitochondrial membrane potential was decreased with MSM pretreatment in activated macrophages. Since excess nitric oxide production causes apoptosis of macrophages, anti-apoptotic effects of MSM are thought to be mediated by its inhibitor effects on inducible nitric oxide synthase (iNOS) protein and nitric oxide levels. More interestingly, higher doses of MSM exhibited biphasic effects, inhibited cell viability, induced apoptosis of macrophages, increased caspase-3 activity and PARP cleavage. Thus, our results reveal the molecular mechanism of of MSM indicating that MSM supplementation may be beneficial for complications related to nitric oxide-dependent apoptosis in inflammatory conditions. However, the optimum concentration of MSM must be chosen carefully to elicit the desired effect.
AIMS: Reactive oxygen species (ROS) are highly diffusable and reactive molecules which modulate gene transcription, particularly of pro-inflammatory cytokines which play a crucial role in the nascency and progression of chronic inflammatory diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA). Since thiols could be potent inhibitors of the production of cytokines, the effects of dimethyl sulphoxide (DMSO) and dimethyl sulphone (DMS) on constitutive and IL-1β-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2 were evaluated.
MAIN METHODS: C-28/I2 cells were incubated for 12h with different concentrations of DMSO or DMS. The secretion of IL-6 and IL-8 was quantified by enzyme-linked immunosorbent assays (ELISAs). The impact of DMSO and DMS on the regulation of p38 and ERK1/2 mitogen-activated protein kinases (MAPKs) was confirmed by Western blot experiments. Furthermore, C-28/I2 cells were stimulated with IL-1β in the absence or presence of DMSO and DMS and IL-6 and IL-8 expression was quantified by ELISAs and quantitative real-time polymerase chain reaction (qRT-PCR).
KEY FINDINGS: C-28/I2 cells constitutively expressed large quantities of IL-6 and IL-8. Long-term exposure of cells to DMSO (1%) or DMS (100mM) led to a dramatic downregulation of IL-6 and IL-8 expression which was accompanied by the deactivation of ERK1/2. Both substances also blocked IL-1β-induced IL-6 and IL-8 expression.
SIGNIFICANCE: In this study, we demonstrate that both DMSO and DMS represent strong anti-inflammatory properties by blocking constitutive as well as IL-1β-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2.
Methylsulfonylmethane (MSM), also known as dimethyl sulfone and methyl sulfone, is an organic sulfur-containing compound that occurs naturally in a variety of fruits, vegetables, grains, and animals, including humans. In the present study, we demonstrated the anti-inflammatory effects of MSM in lipopolysaccharide (LPS)-stimulated murine macrophages, RAW264.7 cells. MSM significantly inhibited the release of nitric oxide and prostaglandin E(2) by alleviating the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated RAW264.7 cells. Furthermore, the levels of interleukin-6 and tumor necrosis factor-alpha were decreased by MSM treatment in cell culture supernatants. Further study indicated that the translocation of the p65 subunit of nuclear factor (NF)-kappaB to the nucleus was inhibited by MSM treatment in LPS-stimulated RAW264.7 cells, in which it helped block degradation of inhibitor of NF-kappaB. In addition, in vivo studies demonstrated that topical administration of MSM at 500-1250 microg/ear resulted in similar inhibitory activities in 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema. Collectively, theses results indicate that MSM inhibits LPS-induced release of pro-inflammatory mediators in murine macrophages through downregulation of NF-kappaB signaling.
Dimethyl sulfoxide (DMSO) has been demonstrated to suppress the in vitro microbicidal activity of neutrophils. In addition, this compound has been described as having significant anti-inflammatory activity. These properties have generally been attributed to the effectiveness of this compound as a hydroxyl radical scavenger. However, DMSO can also act as a reductant under certain conditions, yielding its fully oxidized form, dimethyl sulfone (DMSO2, or MSM), as the product. Therefore, we evaluated the ability of these two compounds to interfere with the production of oxidants other than the hydroxl radical by stimulated human neutrophils. In a cell-free assay, DMSO was found to quench the oxidant activity of hypochlorous acid. Neither DMSO nor DMSO2 (MSM) reacted with superoxide, hydrogen peroxide, taurine chloramine, or monochloramine in this system. However, both DMSO and DMSO2 (MSM) significantly suppressed the production of superoxide, hydrogen peroxide, and hypochlorous acid by human neutrophils stimulated with either phorbol myristate acetate or opsonized zymosan. Neutrophil viability was not reduced by either DMSO or DMSO2 (MSM). Inhibition of the oxidative function of stimulated neutrophils by DMSO may provide an alternative explanation for the effects of this compound on the microbicidal activity of neutrophils and as an in vivo anti-inflammatory agent.